CPerronFrobenius.java
/*
* @cond LICENSE
* ######################################################################################
* # LGPL License #
* # #
* # This file is part of the LightJason AgentSpeak(L++) #
* # Copyright (c) 2015-19, LightJason (info@lightjason.org) #
* # This program is free software: you can redistribute it and/or modify #
* # it under the terms of the GNU Lesser General Public License as #
* # published by the Free Software Foundation, either version 3 of the #
* # License, or (at your option) any later version. #
* # #
* # This program is distributed in the hope that it will be useful, #
* # but WITHOUT ANY WARRANTY; without even the implied warranty of #
* # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
* # GNU Lesser General Public License for more details. #
* # #
* # You should have received a copy of the GNU Lesser General Public License #
* # along with this program. If not, see http://www.gnu.org/licenses/ #
* ######################################################################################
* @endcond
*/
package org.lightjason.agentspeak.action.builtin.math.blas.matrix;
import cern.colt.matrix.tdouble.DoubleMatrix1D;
import cern.colt.matrix.tdouble.DoubleMatrix2D;
import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D;
import cern.jet.math.tdouble.DoubleMult;
import org.lightjason.agentspeak.action.builtin.math.blas.IAlgebra;
import org.lightjason.agentspeak.language.CCommon;
import org.lightjason.agentspeak.language.CRawTerm;
import org.lightjason.agentspeak.language.ITerm;
import org.lightjason.agentspeak.language.execution.IContext;
import org.lightjason.agentspeak.language.fuzzy.CFuzzyValue;
import org.lightjason.agentspeak.language.fuzzy.IFuzzyValue;
import javax.annotation.Nonnegative;
import javax.annotation.Nonnull;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
/**
* calculates the largest eigenvector with perron-frobenius theorem.
* The action calculates the largest eigenvector of a sequared matrix
* based on the perron-frobenius theorem, the calculation is \f$ E_{t+1} = M \cdot E_t \f$,
* the action uses on the first argument the number of iterations and all other argumentes
* are squared matrices, the returning arguments are the eigenvector for each matrix, the
* action never fails
*
* {@code [E1|E2|E3] = math/blas/matrix/perronfrobenius(5, M1, M2, M3);}
* @see https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius_theorem
*/
public final class CPerronFrobenius extends IAlgebra
{
/**
* serial id
*/
private static final long serialVersionUID = -4686274043894517802L;
/**
* ctor
*/
public CPerronFrobenius()
{
super( 4 );
}
@Nonnegative
@Override
public final int minimalArgumentNumber()
{
return 2;
}
@Nonnull
@Override
public final IFuzzyValue<Boolean> execute( final boolean p_parallel, @Nonnull final IContext p_context,
@Nonnull final List<ITerm> p_argument, @Nonnull final List<ITerm> p_return )
{
final Random l_random = ThreadLocalRandom.current();
final List<ITerm> l_arguments = CCommon.flatten( p_argument ).collect( Collectors.toList() );
// create eigenvectors
final List<DoubleMatrix1D> l_eigenvector = IntStream
.range( 0, l_arguments.size() - 1 )
.parallel()
.boxed()
.map( i -> new double[l_arguments.get( i ).<DoubleMatrix2D>raw().rows()] )
.map( DenseDoubleMatrix1D::new )
.peek( i -> IntStream.range( 0, Long.valueOf( i.size() ).intValue() ).forEach( j -> i.setQuick( j, l_random.nextDouble() ) ) )
.collect( Collectors.toList() );
// run iteration
IntStream.range( 0, l_arguments.get( 0 ).<Number>raw().intValue() )
.forEach( i -> IntStream
.range( 0, l_arguments.size() )
.boxed()
.parallel()
.forEach( j ->
{
l_eigenvector.get( j ).assign( DENSEALGEBRA.mult( l_arguments.get( j + 1 ).<DoubleMatrix2D>raw(), l_eigenvector.get( j ) ) );
l_eigenvector.get( j ).assign( DoubleMult.div( DENSEALGEBRA.norm2( l_eigenvector.get( j ) ) ) );
} ) );
l_eigenvector.stream()
.map( CRawTerm::from )
.forEach( p_return::add );
return CFuzzyValue.from( true );
}
}