CSolve.java
/*
* @cond LICENSE
* ######################################################################################
* # LGPL License #
* # #
* # This file is part of the LightJason AgentSpeak(L++) #
* # Copyright (c) 2015-19, LightJason (info@lightjason.org) #
* # This program is free software: you can redistribute it and/or modify #
* # it under the terms of the GNU Lesser General Public License as #
* # published by the Free Software Foundation, either version 3 of the #
* # License, or (at your option) any later version. #
* # #
* # This program is distributed in the hope that it will be useful, #
* # but WITHOUT ANY WARRANTY; without even the implied warranty of #
* # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
* # GNU Lesser General Public License for more details. #
* # #
* # You should have received a copy of the GNU Lesser General Public License #
* # along with this program. If not, see http://www.gnu.org/licenses/ #
* ######################################################################################
* @endcond
*/
package org.lightjason.agentspeak.action.builtin.math.linearprogram;
import org.apache.commons.lang3.tuple.Pair;
import org.apache.commons.math3.optim.MaxIter;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.linear.LinearConstraint;
import org.apache.commons.math3.optim.linear.LinearConstraintSet;
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction;
import org.apache.commons.math3.optim.linear.NonNegativeConstraint;
import org.apache.commons.math3.optim.linear.SimplexSolver;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.lightjason.agentspeak.action.builtin.IBuiltinAction;
import org.lightjason.agentspeak.language.CCommon;
import org.lightjason.agentspeak.language.CRawTerm;
import org.lightjason.agentspeak.language.ITerm;
import org.lightjason.agentspeak.language.execution.IContext;
import org.lightjason.agentspeak.language.fuzzy.CFuzzyValue;
import org.lightjason.agentspeak.language.fuzzy.IFuzzyValue;
import javax.annotation.Nonnegative;
import javax.annotation.Nonnull;
import java.util.Arrays;
import java.util.Collection;
import java.util.LinkedList;
import java.util.List;
import java.util.Objects;
/**
* solves the linear program and returns the solution.
* The action solves the linear program and returns the
* solution. The first argument is the linear program,
* all other arguments can be a number or a string with
* the definition:
*
* + maximize / minimize defines the optimization goal
* + non-negative defines all variables with non-negative values
* + number is the number of iteration for solving
*
* The return arguments are at the first the value, second
* the number of all referenced \f$ x_i \f$ points and after
* that all arguments the values of \f$ x_i \f$
*
* {@code [Value|CountXi|Xi] = math/linearprogram/solve( LP, "maximize", "non-negative" );}
* @see https://en.wikipedia.org/wiki/Linear_programming
* @see http://commons.apache.org/proper/commons-math/userguide/optimization.html
*/
public final class CSolve extends IBuiltinAction
{
/**
* serial id
*/
private static final long serialVersionUID = -9105794980077188037L;
/**
* ctor
*/
public CSolve()
{
super( 3 );
}
@Nonnegative
@Override
public final int minimalArgumentNumber()
{
return 1;
}
@Nonnull
@Override
public final IFuzzyValue<Boolean> execute( final boolean p_parallel, @Nonnull final IContext p_context,
@Nonnull final List<ITerm> p_argument, @Nonnull final List<ITerm> p_return )
{
// first argument is the LP pair object, second argument is the goal-type (maximize / minimize),
// third & fourth argument can be the number of iterations or string with "non-negative" variables
final List<OptimizationData> l_settings = new LinkedList<>();
final Pair<LinearObjectiveFunction, Collection<LinearConstraint>> l_default = p_argument.get( 0 ).raw();
l_settings.add( l_default.getLeft() );
l_settings.add( new LinearConstraintSet( l_default.getRight() ) );
p_argument.subList( 1, p_argument.size() ).stream()
.map( i ->
{
if ( CCommon.rawvalueAssignableTo( i, Number.class ) )
return new MaxIter( i.raw() );
if ( CCommon.rawvalueAssignableTo( i, String.class ) )
switch ( i.<String>raw().trim().toLowerCase() )
{
case "non-negative":
return new NonNegativeConstraint( true );
case "maximize":
return GoalType.MAXIMIZE;
case "minimize":
return GoalType.MINIMIZE;
default:
return null;
}
return null;
} )
.filter( Objects::nonNull )
.forEach( l_settings::add );
// optimze and return
final SimplexSolver l_lp = new SimplexSolver();
final PointValuePair l_result = l_lp.optimize( l_settings.toArray( new OptimizationData[l_settings.size()] ) );
p_return.add( CRawTerm.from( l_result.getValue() ) );
p_return.add( CRawTerm.from( l_result.getPoint().length ) );
Arrays.stream( l_result.getPoint() ).boxed().map( CRawTerm::from ).forEach( p_return::add );
return CFuzzyValue.from( true );
}
}